Analysis of the Bottom Topography of the Reservoir Due to Sediment Trapping (According to the Krasnodar Reservoir, Russia)

Author:

Pogorelov A. V.1,Laguta A. A.1,Netrebin P B.1,Lipilin D. A.2

Affiliation:

1. Kuban State University

2. Kuban State University; Kuban State Agrarian University named after I.T. Trubilin

Abstract

Morphometric descriptions of reservoirs are usually limited to the type, shape, altitude position, bed size and volume of water in them. The article presents the results of the analysis of the bottom topography of the Krasnodar reservoir and the transformations of this for 2005-2021. The analysis was carried out based on the materials of bathymetric surveys for the usable volume of the reservoir on an area of 224 km2 with the creation of digital elevation models. The topography of the reservoir bottom is represented by flat sections of flooded accumulative plain with prevailing slopes of about 0.2–0.4°, dissected by riverbeds of lower-order tributaries. The transformation of the topography is caused by gradual silting. The total volume of sediments for this area in 2005-2021 amounted to 127 million m3 with an average siltation layer of 0.4 m. To describe the morphological properties of the bottom topography, we used geomorphometry techniques with the calculation of the BPI index (Bathymetric Position Index) and the classification of mesoscale topography forms based on it. For the riverbed, there are topography forms related to three types of surfaces: flat (Lower Bank Shelves), concave (Depressions, Deep Depressions) and convex (Reef Crests, Back Reefs, Mid-Slope Ridges). The constructed maps reflect the differentiated morphology of the bed surface, the evolution of topography forms and the change in roughness under conditions of continuous transformation of the basin and allow judging the prevailing morphogenetic processes. Morphologically, the coastal zone and the shallow part of the riverbed are the most difficult to construct. Here, along with long-shore reef crests of different genesis, deep depressions and simple depressions in the form of underwater channels on the deltas of extension can form on the accumulative shoal.

Publisher

Russian Geographical Society

Subject

Environmental Science (miscellaneous),Geography, Planning and Development,Agricultural and Biological Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3