Relevance Of Era5 Reanalysis For Wind Energy Applications: Comparison With Sodar Observations

Author:

Shestakova Anna A.1,Fedotova Ekaterina V.2,Lyulyukin Vasily S.3

Affiliation:

1. Obukhov Institute of Atmospheric Physics of the Russian Academy of Science; Research Computing Center of the Lomonosov Moscow State University

2. Moscow Power Engineering Institute

3. Obukhov Institute of Atmospheric Physics of the Russian Academy of Science; Bauman Moscow State Technical University

Abstract

ERA5 reanalysis is one of the most trusted climate data sources for wind energy modeling. However, any reanalysis should be verified through comparison with observational data to detect biases before further use. For wind verification at heights close to typical wind turbine hub heights (i.e. about 100 m), it is preferable to use either in-situ measurements from meteorological towers or remote sensing data like acoustic and laser vertical profilers, which remain independent of reanalysis. In this study, we validated the wind speed data from ERA5 at a height of 100 m using data from four sodars (acoustic profilers) located in different climatic and natural vegetation zones across European Russia. The assessments revealed a systematic error at most stations; in general, ERA5 tends to overestimate wind speed over forests and underestimate it over grasslands and deserts. As anticipated, the largest errors were observed at a station on the mountain coast, where the relative wind speed error reached 45%. We performed the bias correction which reduced absolute errors and eliminated the error dependence on the  daily course, which was crucial for wind energy modeling. Without bias correction, the error in the wind power capacity factor ranged from 30 to 50%. Hence, it is strongly recommended to apply correction of ERA5 for energy calculations, at least in the areas under consideration.. 

Publisher

Russian Geographical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3