Polarographic Performance of Some Azo Derivatives Derived from 2-amino-4-hydroxy Pyridine and Its Inhibitory Effect on C-steel Corrosion in Hydrochloric acid

Author:

Abdallah M.1,Alfakeer M. M.,Hasan N. F.1,Mabrouk E. M.1,Alharbi Ahmed. M.2

Affiliation:

1. Department of Chemistry, Faculty of Science. Benha University, Benha, Egypt.

2. Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia.

Abstract

The polarographic performance of five azo compounds derived from 2-amino-4-hydroxypyridine was studied in BR buffer series of pH 2-12. The polarograms of all azo compounds in strong acidic solutions gave a single irreversible diffusion-controlled 4-electron wave representing the splitting of the N=N group to the amine stage but in alkaline solutions 2-electron irreversible wave is obtained corresponding to the reduction of the azo center to the hydrazo stage. For NO2 substituted derivative, approximately two equal waves were observed in the acidic solutions, , but in the alkali, the rise of the second wave is approximately twice that of the first wave. The effect of substituents on electrode reaction was investigated and the kinetic parameters were calculated. The mechanistic pathway was proposed and interpreted. The dissociation constants of the tested azo compounds were examined by potentiometric methods and the M-L formation constants of their complexes with some transition metal ions were computed. Application of the investigated azo compounds as inhibitors of dissolution of carbon steel in in 1MHCl solutions was inspected using potentiodynamic polarization technique. The results indicated that these compounds inhibit C-steel corrosion in HCl solutions and the inhibition efficiency reached 81% in presence of 1x10-3 M of the inhibitors. The efficiency of the inhibitors follows the following sequence: III> II > I > IV > V This arrangement is consistent with the sequence of the E1/2 and the pka values of these azo compounds.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3