The use of Silica Supported Nickel-Copper Oxide Catalyst for Photodegradation of Methylene Blue

Author:

Prodjosantoso Anti Kolonial1ORCID,Shelma Farrasiya Indika1,Budiasih Kun Sri1,Utomo Maximus Pranjoto1

Affiliation:

1. Department of Chemistry, Yogyakarta State University, Yogyakarta, 55281, Indonesia.

Abstract

Photodegradation is a save and low cost methods to clean water bodies from some organic pollutants. The method has been developed in term of increasing the efficiency of the degradation capacity of photocatalyst. The photocatalyst working under visible light is the most desirable. The preparation of silica supported nickel-copper oxide [(Ni-Cu)Ox@SiO2] catalyst and the use of the catalyst in the photodegradation of methylene blue in the water are reported. The catalyst was prepared by impregnating the silica support into the mixture of nickel and copper salts, followed by calcination at 800○C for 4 hours. A series method of XRD, SEM-EDX, and UV-Vis Diffuse Reflectance has been used to characterize the catalyst. The catalyst adsorption test was undertaken in the dark, and the catalyst activity test for photodegradation of methylene blue was conducted under the sunlight. The XRD diffractogram of as prepared (Ni-Cu)Ox@SiO2 shows a weak-wide peak at 2θ = 21.8° indicating SiO2 tridymite, and has a crystallite size of 10.38 nm. The combination method of SEM and EDX confirms the formation of (Ni-Cu)Ox@SiO2. The (Ni-Cu)Ox@SiO2 catalyst has a relatively low bandgap energy and shows a good activity for photodegradation of blue methylene under sunlight. The adsorption of the methylene blue on the (Ni-Cu)Ox@SiO2 follows the Langmuir isotherm pattern.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3