Optimization of Oil Production from Cassava Pulp and Sugarcane Bagasse using Oleaginous Yeast

Author:

Rachamontree Phakamas1,Sriariyanun Malinee2,Tepaamorndech Surapun3,Somboonwatthanakul Issaraporn1ORCID

Affiliation:

1. Department of Biotechnology, Faculty of Technology, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand.

2. Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.

3. Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120 Thailand.

Abstract

Microbial oil is one of alternative sources for biofuel and value-added chemical production in biorefining process of lignocellulosic biomass. The bottleneck of this process is the low conversion rate of lignocellulose biomass to the target product. This research aims to optimize microbial oil production as raw material for biorefining process from agricultural waste by using Plackett–Burman (PB) design and Response Surface Methodology (RSM). Acid-hydrolysates of cassava pulp and sugarcane bagasse were converted to bio-oil by fermentation activities of two oleaginous yeasts, designated as MSU2 and Ka28. The fermentation parameters were screened by PB design to identify their impacts on oil yield, and the condition of each parameter was optimized by RSM to maximized oil yield. The predicted optimal condition obtained from RSM provided the highest lipid yield at 34.56 and 21.85% from hydrolysates of cassava pulp and sugarcane bagasse, respectively. Then, fatty acid compositions in oil were analyzed by GCMS, and our results demonstrated that palmitic acid and oleic acid were the major constituents at 72.95 and 195.01 mg/g-crude lipid, respectively. These fatty acid distribution profiles were suitable for application in biodiesel production and suggested the utilization of agricultural waste in biorefining process.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3