Hybrid Model: Deep Learning method for Early Detection of Alzheimer’s disease from MRI images

Author:

Vashishtha Anuradha1ORCID,Acharya Anuja Kumar1ORCID,Swain Sujata1ORCID

Affiliation:

1. School of computer engineering, KIIT University, Bhubaneshwar, India.

Abstract

Alzheimer's disease is a neurodegenerative brain disease that kills neurons. The global prevalence of the disease is gradually growing. In all leading countries, it is one of the senior citizens' leading causes of death. So, much research shows that early detection of illness is the most critical factor in improving patient care and treatment outcomes. Currently, AD is diagnosed by the manual study of magnetic resonance imaging, biomarker tests, and cognitive tests. Machine learning algorithms are used for automatic diagnosis. However, they have certain limits in terms of accuracy. Another issue is that models trained on class-unbalanced datasets often have poor results. Therefore, the main objective of the proposed work is to include a pre-processing method before the hybrid model to improve classification accuracy. This research presents a hybrid model based on a deep learning approach to detect Alzheimer’s disease. Which, we are using the SMOTE method to equally distribute the classes to prevent the issue of class imbalance. The hybrid model uses Inception V3 and Resnet50 to detect characteristics of Alzheimer's disease from magnetic resonance imaging. Finally, a dense layer of convolution neural network is used for classification. The hybrid approach achieves 99% accuracy in classifying MRI datasets, which is better than the old work. These results are better than existing approaches based on accuracy, specificity, sensitivity, and other characteristics.

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3