Examining Use of Sonic Bloom Technology on the Stomata Opening of Drought-Stressed Soybean

Author:

Pujiwati Istirochah1,Guritno Bambang2,Aini Nurul2,Sakti Setyawan P.3

Affiliation:

1. Department of Agrotechnology, Faculty of Agriculture, University of Islam Malang, 65144 East Java, Indonesia.

2. Department of Agricultural Cultivation, Faculty of Agriculture, Brawijaya University Malang, 65145 East Java, Indonesia.

3. Department of Physics, Faculty of Mathematics and Natural Sciences, Brawijaya University Malang, 65145 East, Indonesia.

Abstract

Sonic bloom is a technology that combines high frequency sound waves and organic nutrients, intended for better plant growth to increase its productivity. This study aimed to determine the effect of sound wave frequency and drought stress on stomatal opening, nutrient uptake efficiency through leaf, and soybean yield. We designed the research as a split plot experiment. The main plot was sound wave frequency consisting of four levels (no frequency imposed, frequencies 2, 4 and 6 kHz. The sub-plot was three soil moisture contents (50,75, and 100% field capacity). We found that the interaction of frequency and soil moisture content affected the width of stomata at the age of 30,40 and 50 days after planting (dap), the efficiency of nitrogen uptake, phosphorus uptake and potassium uptake and the protein content of seeds. The width of stomatal opening at a frequency of 4 kHz in soil moisture 100% FC showed the highest value and was not significantly different from soil moisture 75% FC. There was a positive correlation between exposure to plants with a frequency of 4 kHz with stomatal opening, nutrient uptake and increased yield of soybean crops. The use of sonic bloom technology with plant exposure at a frequency of 4 kHz could increase drought tolerance to 75% soil moisture content. Soybean seed yield increased by 40.89% and seed protein content increased by 10.3%.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Agronomy and Crop Science,Biotechnology

Reference28 articles.

1. Ashraf M., dan Haris P. J. C. Photosynthesis under stressful environments: An overview. 2013;51(2):163-190.

2. CrossRef

3. Transportation and Transpiration System on Plants. http:www/Forumsains.com. 2007; accessed September 18. 2013.

4. Budisantoso I., dan Proklamasiningsih E. Study of Various Soil Moistures and Sonic Bloom Technology in Efforts to Increase Growth and Yield of Soybean Plants. Jurnal Pembangunan Pedesaan. 2003;3(2):14–19.

5. Chowdhury M. E. K., Lim H. S.,dan Bae H. Update on the effect of sound wave on plants. Plant Dis. 2014;20(1):1-7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3