Investigation of Physiological and Biochemical Responses and Essential oil Yieldof Peppermint under Salt Stress

Author:

Gikloo T. Samandari1,A. A. Mehrabi1,S. Jahanbakhsh2,A. Fazeli1,Z. Tahmasebi1

Affiliation:

1. Department of Agronomy and Plant Breeding, University of Ilam, Ilam, Iran.

2. Department of Agronomy and Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran.

Abstract

Peppermint (Menthapiperita L.) is aneconomically important medicinal and aromatic plant grown in different areas worldwide. Secondary metabolites were fundamentally produced by genetic processing;however, environmental factors affect their biosynthesis. Salinity is the most important abiotic stress which induces morphological, physiological, and biochemical changes in plants.To investigate the influence of salinity stress (0, 25, 50, 75, 100 and 125 mMNaCl)on chlorophyll content, stomatal conductance, relative water content (RWC), proline, Na+ and K+ content, antioxidant enzymes of catalase (CAT), peroxidase (POX) and polyphenol oxidase (PPO), protein, essential oil yield and dry weight of peppermint, a greenhouse study was conducted. The results indicated that salinity had a significant effect on foregoing parameters. Changes in chlorophyll content werepeak and stomata conductivity was a single function. Based on estimations, the highest chlorophyll contentwas recorded for low salinity (60 mMNaCl).The plant proline content was higher in stress condition compared tocontrol plants. The highest proline content observed in 125mM NaClconcentration was two times higher than that of control plants.There was an increase and then decrease in CAT and POX activities, respectively, in lower and sever levels of salinity.A single equation was the best-fit equation for changing PPO enzyme activity under stress conditions.The dry matter has been affected dramatically by salinity and decreased from 11.34g under the non-stress condition to 4.24 g under high stress condition. Essential oil percentage (in dry matter) increased in moderate salinity stress. We found that the amount of essential oil per plant was linearly decreased. So, the highest (9.78 g plant-1) amount of essential oil per plant belonged to control group and the lowest (4.6 g plant-1) wasobserved for full stress condition.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Agronomy and Crop Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3