Polyamidoamine-Remdesivir Conjugate: Physical Stability and Cellular Uptake Enhancement

Author:

Qudsiani Kamilia1ORCID,Sutriyo Sutriyo1ORCID,Rahmasari Ratika1ORCID

Affiliation:

1. Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia, 16424

Abstract

Nucleoside analogue antiviral remdesivir works by inhibiting the RNA-dependent RNA polymerase enzyme and terminating the viral replication. Currently, remdesivir is under a clinical trial for its activity against SARS-CoV-2. In the blood, remdesivir will undergo an enzymatic reaction to become monophosphate analogue form which is difficult to penetrate into the cell membrane. PAMAM (polyamidoamine) dendrimer is a good carrier to encapsulate remdesivir as a water-insoluble drug (0,339 mg/mL). Entrapment of remdesivir in the PAMAM cavity avoided remdesivir molecules to not undergo the enzymatic reactions. This study aimed to synthesize, characterize and evaluate cellular uptake of PAMAM-Remdesivir conjugate. PAMAM-Remdesivir was prepared with various stirring times (3, 6, 12, 24, and 48 hours). The conjugates were characterized to observe the size and particle distribution using Particle Size Analyzer, encapsulating efficiency using UV-Vis Spectroscopy, interaction between PAMAM and remdesivir particle using Fourier Transform Infrared Spectroscopy and cellular uptake of PAMAM-RDV using Fluorescence Microscope. The optimized stirring time of PAMAM-Remdesivir conjugate was 24 hours wich resulted the particles charge of + 23,07 mV of zeta potential, 1008 nm of particle size, 0,730 of PDI, and 69% entrapment efficiency. In addition, the FTIR analysis showed that remdesivir molecules successfully conjugated to PAMAM. Thus, through strring optimization time, the remdesivir molecules were successfully entrapped to PAMAM cavity. The cellular uptake in Vero Cell of PAMAM-RDV conjugated fluorescein isothiocyanate was observed with fluorescence microscope and had a stronger intensity than remdesivir only solution.

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3