Charge Transfer Resistance and Adsorption performance of a New Pyrrole Derivative on Mild steel in Acidic media: Antibacterial studies

Author:

Pandimuthu G.1,Muthukrishnan P.2ORCID,Rameshkumar S.3,Paramasivaganesh K.4ORCID,Sankar A.1ORCID

Affiliation:

1. 1Department of Chemistry, Kandaswami Kandar’s College, P.Velur, Namakkal-638 182, India.

2. 3Department of Chemistry, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore-641021, India.

3. 4Department of Chemistry, Sri Vasavi College, Erode-638316, India.

4. 2Department of Chemistry, Arumugam Pillai Seethai Ammal College,Tiruppatur-630211 India.

Abstract

In the present work, Pyrrole derivatives containing oxygen, nitrogenand aromatic rings namely,N-(1H-Pyrrol-2-ylmethylidene)-2,3-dihydro-1,4-benzodioxin-6-amine (BPS) was synthesized and its anticorrosion potential was studied applying the gravimetric, polarization and AC impedance methods on the mild steel (MS) corrosion in corrodent (0.5M H2SO4 and 1 M HCl). It is observed that in the acidic environments, the inhibition efficiency (IE) of the BPS raised with the enhance in the concentration and it resulted in greater inhibition efficiency in1 M HCl solution than in 0.5M H2SO4 solution. The inhibition efficiency assessed by Electrochemical Impedance Spectroscopy reaches about 81.6% in 0.5 M H2SO4 and 84.2% in 1.0 M HCl solutions at 600 ppm of BPS.The studied BPS being mixed type inhibitor was shown by the Tafel polarization curves. And it was noticed that over the MS surface, the adsorption of the BPS obeyed Langmuirisotherm. In order to ascertain the inhibitor mechanism, the potential of zero charge (PZC) was measured. Electrochemical Impedance spectroscopy was applied to assess the influence of temperature on corrosion inhibition.The surface morphology of MS surface was analyzed using SEM and AFM techniques. The anti-bacterial activity for the BPS was studied as a divergent analysis.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3