Affiliation:
1. Department of Chemistry, University of Zambia, Zambia.
Abstract
Batch adsorption studies were done on aqueous solutions of Pb(NO3)2 at varying solute concentration, adsorbent dose, contact time, temperature, calcination temperatures and pH. Residual concentrations of the solute were found out using AAS and optimum conditions were studied. Adsorbent used in this study is locally available silicate rich mineral which closely resembles zeolites. The net negative charge on the framework of hydrated aluminosilicates is responsible for ion exchange property. Freundlich model was used to validate the results obtained from batch experiments plotting lnCe vs lnqe. Objective of this work is to study the kinetics of adsorption considering the interplay of particle diffusion in addition to proving the effectiveness as an adsorbent. A diffusion model also was also applied apart from kinetic model to analyze the experimental results more specifically. For maximizing the efficiency of the adsorption process and minimizing the time involved, variables like temperature, reactants and pH were manipulated using kinetic studies. It establishes the optimum reaction conditions for various experimental parameters in the process of adsorption.
Publisher
Oriental Scientific Publishing Company
Subject
Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry