Zeolite-Templated NiO Nanostructure for Methanol Oxidation Reaction

Author:

M. Aldhayan Daifallah1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia.

Abstract

NiO nano particles with particle size of 10.0 to 15.0 nm using zeolite as a template were successfully prepared and loaded (NiO 10 wt.%) on functionalized carbon nanofibers (CNFs). The as-prepared material NiO-CNFs was characterized and tested as an electrocatalyst and a catalyst for the methanol conversion. Electrocatalytic results showed high stability which was evinced by repetitive cycles as a result of catalyst surface activation. Gas phase catalytic tests were carried out at 290oC over NiO-CNFs catalyst in fresh, reduced, and oxidized forms. The results showed that dimethyl ether (DME) and CO2 were obtained as main products. Formaldehyde (FA), methyl formate (MF) and dimethoxymethane (DMM) were obtained as traces. The conversion of methanol in the absence of H2 or O2 over inactivated NiO-CNFs catalyst suggested that DME reacts with the formed H2O to produce CO2. In both cases, reactivation of the catalyst by H2 (reduction) or by Air (oxidation), the conversion was increased indicating a regeneration of the catalyst.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3