Enhancing the Light Harvesting Efficiency, Open Circuit Voltage And Stability of Molybdenum Doped (Zno)6 Nanocluster in Dye-Sensitized Solar Cells: A DFT Study

Author:

Dheivamalar S.1ORCID,Bansura banu K.1

Affiliation:

1. Department of Physics, Periyar E.V.R. College (Autonomous), Tiruchirappalli-620023, India.

Abstract

In this study, the electronic and structural properties of drum structured Mo-doped Zn6O6 (MoZn5O6) cluster as the π conjugated bridging in the dye-sensitized solar cells (DSSC) were compared with its pristine form by density functional theory (DFT) calculations under Gaussian 09 Program. The frontier molecular orbital study was explored to determine the charge transport characteristics of donor-acceptor moieties over the entire visible range and the electron injection from the valence band (LUMO) orbital to the conduction band (HOMO) orbital of MoZn5O6. The energy gap (Eg), binding energy (EB), global reactivity descriptors, thermodynamic parameters and the dipole moment were also calculated for MoZn5O6 and compared with Zn6O6. The density of states (DOS) of MoZn5O6 material was investigated to demonstrate the importance of d orbital of Mo atom in hybridization. To examine the charge distribution, Mulliken atomic charge distribution and molecular electrostatic potential (MEP) were analyzed. A spectroscopic study was included for the better perception of the interaction of Mo with Zn6O6 cluster. The increased value of the first-order hyperpolarizability of MoZn5O6 from its pure clustermanifests the MoZn5O6 is a better candidate with the superior nonlinear optical property. The analysis of UV-Vis spectra through the time-dependent density functional theory (TD-DFT) discovers that the MoZn5O6 has larger light harvesting efficiency (LHE) which influences the higher photon to current conversion efficiency. As a result, the valence band (LUMO) of MoZn5O6 is intense than the conduction band (HOMO) of MoZn5O6 making an increase in the open circuit voltage (VOC) and hence it confirms that the MoZn5O6 material can be a used in photovoltaic applications.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3