Tungsten-Copper Composites for Arcing Contact Applications

Author:

Valentina Lungu Magdalena1ORCID

Affiliation:

1. National Institute for Research and Development in Electrical Engineering ICPE-CA, Metallic, Composite and Polymeric Materials Department, 313 Splaiul Unirii Street, 030138 Bucharest, Romania

Abstract

The study presents the research findings on electrical contact materials based on tungsten-copper (W-Cu) composites containing 72 ± 3 wt.% W, rest Cu, and up to 1.5 wt.% Ni. Cylindrical sintered parts with 57 ± 0.5 mm in diameter and 12 ± 0.5 mm in height were manufactured by pressing, sintering, and liquid infiltration route, then were mechanically polished and processed as complex shape protection rings used as arcing contacts in high voltage circuit breakers (HVCBs). The surface elemental composition of the sintered parts was determined by wavelength dispersive X-ray fluorescence spectrometry. The density was determined by hydrostatic weighing in ethanol. The arithmetic mean surface roughness was measured by contact profilometry. The microstructure was studied by scanning electron microscopy. The electrical conductivity was measured by eddy current method. The thermal diffusivity and specific heat were determined by laser flash analysis. Instrumented indentation testing and two computational methods (Oliver & Pharr, and Martens hardness) were employed to study the mechanical properties under quadratic loading and continuous multi cycle (CMC) indentation mode. The functional behavior of the arcing contacts was assessed in terms of static and dynamic contact resistance in operation in minimum oil HVCBs of 110 kV. The properties investigation revealed highly dense contact parts with homogeneous microstructure, Vickers hardness of 260-374, elastic modulus of 185-311 GPa, as well as good electrical and thermal conductivity. The arcing contacts proved a good functional behavior. in service, too. The results endorse the developed sintered contact materials for implementation in practical applications.

Funder

National Authority for Scientific Research and Innovation

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Reference31 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3