The Protective Effect of Indole Alkaloid Vincanine Against Hypoxia-Induced Vasorelaxation Model of Rat Aorta

Author:

Mirzayeva Yulduzkhon T.1ORCID,Zaripov Abdisalim A.1ORCID,Zhumaev Inoyat Z.1ORCID,Usmanov Pulat B.1,Rustamov Shavkat Yu.1ORCID,Boboev Sadriddin N.1ORCID,Qurbonova Shakhnoza B.1ORCID,Ibragimov Eldor B.1ORCID,Musaeva Madina K.1ORCID,Sobirov Sardor B.1,Adizov Shahobiddin M.2ORCID

Affiliation:

1. 1Institute of Biophysics and Biochemistry et the National University of Uzbekistan, Tashkent, Uzbekistan

2. 2Institute of the Chemistry of Plant Substances, Uzbek Academy of Sciences, Tashkent, Uzbekistan

Abstract

Introduction: Using conventional organ bath procedures, the current study sought to determine how vincanine hydrochloride affected vasorelaxation brought on by hypoxia in rat aortic rings. Methods: To induce hypoxia, we used a glucose-free Krebs solution that was infused with 95% N2 and 5% CO2. After 60 minutes of hypoxia, the effect of vincanine was evaluated on aortic rings that were precontracted with either 50 mM KCl or 1 µM phenylephrine (PE). The effect of vincanine was more noticeable in aortic rings that had been precontracted by PE as opposed to KCl. Additionally, when verapamil, a blocker of L-type VDCCs, was preincubated with endothelium-intact aortic rings and KCI was used for precontraction, the effect of vincanine on hypoxia-induced vasorelaxation was significantly reduced. Results: Vincanine inhibited hypoxia-induced vasorelaxation in aortic rings precontracted with PE in a calcium-free buffer. Furthermore, the presence of glibenclamide, a specific inhibitor of ATP-sensitive K+-channels (KATP), and tetraethylammonium chloride (TEA), a nonspecific inhibitor of calcium-activated large conductance K+-channels (BKca), significantly reduced the effect of vincanine on hypoxia-induced vasorelaxation. The removal of the endothelium also had a significant impact on the effect of vincanine on hypoxia-induced vasorelaxation. Conclusion: The present findings showed that alkaloid vincanine isolated from the leaves of Vinca minor H. significantly abolished the hypoxia-induced vasorelaxation in rat aorta. The obtained results suggest that vincanine may protect the rat aorta against hypoxic injuries in the vasculature.

Publisher

Oriental Scientific Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3