Methods and Algorithms of Speech Signals Processing and Compression and Their Implementation in Computer Systems

Author:

Alkalani Fadi1ORCID,Sahawneh Raed2

Affiliation:

1. Shaqra University, Saudi Arabia.

2. Irbid National University, Jordan.

Abstract

The review and comparative analysis of the methods of compression and recognition of speech signals is carried out. The result of the carried out analysis of the existing recognition methods indicates, that all of them are based on the use of “inflexible” algorithms, which are badly adapted to the characteristic features of speech signals, thus degrading the efficiency of the operation of the whole recognition system. The necessity of the use of algorithms for determination of recognition features along with the use of the wavelet packet analysis as one of the advanced directions of the creation of the effective methods and principles of the development of the speech signals recognition systems is substantiated. Analysis of the compression methods with the use of the orthogonal transformations at the complete exception of minimal decomposition factors is conducted; a maximal possible compression degree is defined. In this compression method the orthogonal transformation of the signal segment with the subsequent exception of the set of the smallest modulo decomposition factors, irrespective of the order of their distribution, is conducted. Therefore the additional transfer of the information on the factors distribution is required. As a result, two information streams appear, the first one corresponds to the information stream on the decomposition factors, and the second stream transfers information on the distribution of these factors. Method of the determination of the speech signals recognition features and the algorithm for nonlinear time normalization is proposed and proved. Wavelet-packet transformation is adaptive, i.e. it allows adapting to the signal features more accurately by means of the choice of the proper tree of the optimal decomposition form, which provides the minimal number of wavelet factors at the prescribed accuracy of signal reconstruction, thus eliminating the information-surplus and unnecessary details of the signals. Estimation of the informativeness of the set of wavelet factors is accomplished by the entropy. In order to obtain the recognition factors, the spectral analysis operation is used. In order to carry out the temporary normalization, the deforming function is found, the use of which minimizes the discrepancy between the standard and new words realization. Dedicated to the determination of admissible compression factors on the basis of the orthogonal transformations use at the incomplete elimination of the set of minimal decomposition factors, to the creation of the block diagram of the method of the recognition features formation, to the practical testing of the software- methods. In order to elevate the compression factor, the adaptive uniform quantization is used, where the adaptation is conducted for all the decomposition factors. The program testing of the recognition methods is carried out by means of determination of the classification error probability using Mahalanobis (Gonzales) distance.

Publisher

Oriental Scientific Publishing Company

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3