Microstructure and Mechanical Properties of Functionally Graded AlSi/MWCNT Composite Cylinders

Author:

Pasha Azeem1ORCID,Rajaprakash B.M.1ORCID

Affiliation:

1. Department of Mechanical Engineering, UVCE, Bangalore University, Bangalore-560001, Karnataka, India.

Abstract

Experimental fabrication of functionally graded Aluminum Silicon-carbon nanotubes (AlSi-MWCNT) reinforcement is significantly less, despite substantial theoretical interest. Many studies focused on axially layered functionally graded material because of ease of fabrication. Full advantage of AlSi-MWCNT functionally graded material only is taken when designed to the various shapes. In this research work, functionally graded cylinders were produced with 2wt% MWCNT at the outer surface to provide a complex and wear-resistant surface. The interior surface is soft with AlSi to provide elasticity. FGM1 sample indicates 112% and 11% increase in maximum tensile strength compared to AlSi and AlSi-MWCNT1wt%. FGM1 sample shows a 37% increase in elongation percentage compared to the AlSi-MWCNT1wt% composite. Test samples showing the typical nature of barrelling. FGM1 sample exhibits compressive strength of 237MPa, exceeding by 245% that of AlSi and by 3.5% that of AlSi-MWCNT1wt%. Three samples consider for each test. Hardness value ranges from 65HV at the core to 115HV at the outer surface. Hardness value Exceeds 56% in the outer layer compared to an inner region of FGM2.There is a proper bond between the layers, and the same demonstrate with properties of tensile, compressive, and hardness. OM with porosity, SEM with EDX evaluates to predict structural gradation in FGM cylinder. KEYWORDS: Aluminum silicon (AlSi) alloy; Functionally graded materials(FGM); Multi wall carbon nano tubes (MWCNT); Nano-composites; Thermo-mechanical processing

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3