Kinetics and Thermal Decomposition Studies of Oxomemazine by Isoconversional Protocols

Author:

Asran Aml M.1ORCID,M. Ahmed Ahmed A.1ORCID,Mohamed Mona A. Mohamed2ORCID

Affiliation:

1. Deanship of Common First Year, Jouf University, Sakaka, Saudi Arabia

2. Pharmaceutical Chemistry Department, National Organization for Drug Control and Research, Egyptian Drug Authority (EDA), Giza, Egypt

Abstract

Thermogravimetry was used to investigate the thermal decomposition of oxomemazine. Oxomemazine has three distinct degradation processes during non-isothermal decomposition. The Arrhenius equation, Coats-Redfern (CR), Horowitz-Metzger (HM), and Flynn-Wall-Ozawa (F-W-O) equations were used in this research to perform kinetic analysis of the first decomposition stage. Oxomemazine thermal stability is very important when it comes to how it can be stored, quality control, and how long it can be used. Using thermal analysis, scientists have been able to learn more about how drug compounds are stable at different temperatures, as well as how fast they break down. Kinetic studies have emerged as a critical component of thermal analysis, with the primary goal of determining the kinetic model of thermal breakdown and calculating the Arrhenius equation parameters. The activation energy of the Arrhenius and Berthelot–Hood temperature functions was determined. The effect of different heating rates (5- 20 oC/min) on thermogravimetric analysis (TG), Differential Thermal Analysis (DTA) is demonstrated.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3