Affiliation:
1. Department of Biomedical Engineering, Hebei University of Technology, Tianjin City, China, 30030
2. Dean of School of Electrical Engineering, Hebei University of Technology, Tianjin City, China, 30030
3. Vice Dean of School of Electrical Engineering, Hebei University of Technology, Tianjin City, China,30030
Abstract
Medical image processing techniques play an important role in helping doctors and facilities for patient diagnosis, the aim of this paper is comparison between three improved methods to identify the brain tumor using magnetic resonance brain images and analysis of the performance of each method according to different values, accuracy, nJaccard coeff, ndice, sensitivity, specificity, recall and precision values,We used three improved methods the first method improved fuzzy c-means algorithm (IFCM), the second method is improved feed-forward neural network (IFFNN), and the third method is a hybrid self-organizing map with a fuzzy k-means algorithm,the significance of these methods is complementary among them where each one has an advantage in a certain value as shown in the paper results, the three methods gave a very good performance, generally they can identify the tumor area clearly in MR brain image with different performance of the values, each method gave better values than others according to a comparison between the performance value of three methods,Finally, the improved methods allow the development of algorithms to diagnose a tumor more accurately and for a short period of time and each method is distinguished from each other in the performance and value, this gives integrity and strength to this work, these methods can be used in pre and post radio surgical applications
Publisher
Oriental Scientific Publishing Company
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献