Accuracy and Precision of Magat Gel As a Dosimeter

Author:

Razak Nik1,Rahman Azhar1,Kandaiya Sivamany1,Mustafa Iskandar1,Yahaya Nor2,Mahmoud Amer1,Maizan Ramzun1

Affiliation:

1. School of Physics, Universiti Sains Malaysia, 18000, Pulau Pinang, Malaysia.

2. School of Distance Education, Universiti Sains Malaysia, 18000, Pulau Pinang, Malaysia.

Abstract

Polymer gel dosimeter is a radiation sensitive chemical dosimeter that can measure 3 D dose distribution with high resolution. Due to the increasing complexity of radiotherapy treatment planning and delivery, accurate experimental radiation dosimetry plays an important role in the implementation and quality assurance of new treatment techniques. A polymer gel dosimeter must possess several important characteristics of a dosimeter to be able to measure absorbed dose precisely. two important dosimetric properties of a dosimeter were determined in this study; accuracy and precision. The MAGAT gels were made of 5% gelatin, 6% methacrylic acid and 10 mM tetrakis-hydroxy-methyl-phosphonium chloride (THPC). The irradiation of MAGAT gel was performed by 6-MV photon beam at a dose range 1 to 10 Gy and was imaged by 1.5 T Magnetic Resonance Imaging (MRI). The dose response of MAGAT gel dosimeter was obtained from spin-spin relaxation rate (R2) of MRI signal. The accuracy of MAGAT gel dosimeter has a range within 4% for doses greater than and equal to 3 Gy. The reproducibility of the MAGAT gel dosimeter at one irradiation was less than 1% whilst the long term reproducibility was within 3% over the five month period. For temporal stability, the dose sensitivity of MAGAT gel dosimeter irradiate at 1 to 11 days post-manufacturing decreased over time. While the dose sensitivity imaged at 1 to 9 days post-irradiation increased up to 4 days post-irradiation and subsequently starts decreasing after 4 days till 9 days. From the study of two dosimetric properties, MAGAT gel dosimeter shows a great dose response with a superior dose response. Thus the MAGAT gel dosimeter can be apply as a 3 D radiotherapy dosimeter.

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3