Isolation, Characterization and Phylogenetic Analysis of Nodule-Associated Bacteria from Mimosa Pudica L.

Author:

Ravunni Maya1ORCID,Yusuf Akkara1ORCID

Affiliation:

1. Interuniversity Centre for Plant Biotechnology, Department of Botany, University of Calicut, Malappuram, Kerala, India.

Abstract

The interaction between rhizobia and other nodule-associated bacteria assists to mitigate nutrient stress in leguminous plants by fixing atmospheric nitrogen and synthesizing plant growth regulators. The beneficial effects of microbial inoculants emphasize the need for further research and their use in modern agriculture. The present study describes the isolation, molecular identification, characterization, and phylogenetic analysis of noduleassociated bacteria from Mimosa pudica Linnaeus. Isolation and phenotypic characterization of nodule-associated bacteria were carried out according to standard procedures. Molecular characterization of the isolates was performed using 16S ribosomal RNA. Plant growth promoting the ability of selected isolates was analyzed by assessing indole acetic acid production, nitrogenfixing ability and organic acid production. Evolutionary distance and relatedness were analyzed using the neighbor-joining method. Thirteen nodule-associated bacteria were isolated and identified using 16S rRNA gene sequencing. The selected isolates such as Rhizobium sp. CU8 and three other co-resident non-rhizobial nodule-associated bacteria (Bacillus cereus MY5, Ralstonia pickettii MY1 and Lactococcus lactis MY3) exhibited plant growth promotion and other potential microbial activities. Phylogenetic analysis revealed the genetic relatedness and evolutionary significance of all the thirteen isolates reside in the root nodule of M. pudica. The present study identified four isolates with plant growth promoting properties. L. lactis MY3 is the first report as a co-resident plant growth promoter from the root nodules of M. pudica.

Funder

University of Calicut

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3