Development of Multi-Epitopes Vaccine against Human Papilloma Virus16 Using the L1 and L2 Proteins as Immunogens

Author:

M. Elshafei Abdelmajeed1ORCID,A. Mahmoud Nuha1ORCID,A. Almofti Yassir2ORCID

Affiliation:

1. 1Faculty of Medicine and Surgery, National University/Sudan

2. 2Department of Molecular Biology and Bioinformatics, College of Veterinary Medicine, University of Bahri, Khartoum- Sudan.

Abstract

Background: Human papillomavirus 16 (HPV16) is a small non-enveloped DNA virus is belonging to Papillomaviridae. It usually causes warts and about 60% of cancer diseases. HPV16 genome consists of double-stranded cDNA of six early and two late proteins. This study attempted to design safe and efficient multi epitopes vaccine from structural proteins (L1 and L2) by using various immunoinformatic databases. The results demonstrated that the predicted vaccine comprised of 408aa and validated in terms of antigenicity, allergenicity, toxicity and stability by putting all critical parameters into consideration. The physiochemical properties displayed isoelectric point (pl) of 10.37. The instability index (II) was 33.6 categorizing vaccine as stable. The aliphatic index was 63.24 and the GRAVY was −0.652 demonstrating the hydrophilicity of the vaccine. Vaccine structures were predicted, refined and validated. Stability of the vaccine was assessed through Ramachandan plot and further assessed by ProSA server. Vaccine solubility was higher than the solubility of E. coli proteins indicating that the vaccine was soluble. Disulfide engineering increased the vaccine stability by substituting the unstable residues with cysteine residues. Vaccine-TLR4 receptor docking resulted in attractive binding energy of –1274.1 kcal/mol and –1450.4kcal/mol for chain A and chain B of the receptor respectively. Reverse transcription of the vaccine protein into a DNA sequence was performed and cloned into a pET30a (+) vector to confirm the clonability of the sequence during microbial expression. Taken together, the vaccine potentially induced immune responses and thus was suitable as a vaccine to combat HPV16 disease. Nonetheless, the efficiency of vaccines must be approved by in vitro and in vivo immunological analysis.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3