Effect of Rutin on the Behavioural, Biochemical and Liver Morphological Changes in Danio Rerio Exposed to Reduced Graphene Oxide (Rgo) Nanoparticles

Author:

Premnath Briska Jifrina1ORCID,Srinivasan Manoj Kumar1ORCID,Nalini Namasivayam1ORCID

Affiliation:

1. Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Tamil Nadu, India

Abstract

ABSTRACT: Reduced graphene oxide (rGO) is a carbon nanomaterial with unique characteristics that permit application in numerous fields. Rutin is a flavonoid with a variety of biological functions and pharmaceutical applications. In topical years, a handful of research has stated on the environmental impacts of carbon nanoparticles (NPs) and the consequences of reduced graphene oxide on the species that live in water bodies. However, the capacity to recuperate after exposure is still mostly unfamiliar. This study analyzed the protective effect of rutin against rGO NPs in zebrafish and the optimal dose required to inverse the impairment caused by rGO NPs exposure in zebrafish. In this study, fish were treated for 14 days and 8 study groups were examined: control, rGO exposure alone (10 mg/L), rutin exposure alone (50, 100 and 200 mg/L) and rGO combined with 3 distinct rutin doses (10 mg/L of rGO + rutin 50, 100, and 200 mg/L). In the zebrafish gill tissues, rGO impairs cells by increasing LPO levels and inducing oxidative stress by suppressing antioxidants (SOD, CAT, GPx, GSH, GR, GST, and vitamin C). Multiple alterations, including sinusoidal and venous congestion, vacuole formation or cytoplasmic vacuolation of hepatocytes, an enlarged hepatic plate gap, and necrosis, were revealed on the structural examination of liver tissues. Based on our results, we conclude that sub-lethal doses of rGO (10 mg/L) could be harmful to zebrafish. Rutin supplementation between 100 and 200 mg/L can protect against the toxic effects of rGO, even though rGO is detrimental to the exposed fish population.

Publisher

Oriental Scientific Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3