Machine Learning Approaches for Investigating Breast Cancer

Author:

Das Sumit1ORCID,Koley Subhodip1,Saha Tanusree1ORCID

Affiliation:

1. JIS College of Engineering, Kalyani, 741235, India.

Abstract

ABSTRACT: This study aims to predict whether the case is malignant or benign and concentrate on the anticipated diagnosis; if the case is malignant, it is advised to admit the patient to the hospital for treatment. The primary goal of this work is to put together models in two distinct datasets to predict breast cancer more accurately, faster, and with fewer errors than before. Then contrast the techniques that produced datasets with the highest accuracy. In this study, the datasets were processed using Support Vector Machine, Logistic Regression, Decision Tree, K-Nearest Neighbours, Artificial Neural Network, Nave Bayes, Stochastic Gradient Descent (SGD),Gradient boosting classifiers(GBC), Stochastic Gradient Boosting (SGB), Extreme Gradient Boosting (XGBoost),and Random Forest. Two datasets—the Wisconsin Diagnostic Breast Cancer dataset and the Breast Cancer dataset—are used to test these methods. to evaluate the findings and choose the algorithm that is more adept in predicting breast cancer. Seven algorithms that operate on both datasets in the AI platform were used to build the article. Breast cancer prediction has gotten much harder because so many people die from the disease in its early stages. Consequently, using two real-time datasets, one for Wisconsin diagnosis and the other for research on breast cancer. The same methods are applied to both datasets, and it is found that SVM provides the best accuracy in the shortest time and with the lowest error rate.

Publisher

Oriental Scientific Publishing Company

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancements in Breast Cancer Diagnosis: Integrating Classifier Algorithms, Neural Network and Ensemble Learning with PCA, VIF for Feature Selection and Dimensionality Reduction;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3