Derangement in Homeostasis of Neutrophil Elastase and its Inhibitory Systems in Ischemic Stroke Patients

Author:

Kunder Mamatha1ORCID,Kutty A.V. Moideen2ORCID,Lakshmaiah V.3ORCID

Affiliation:

1. 1Department of Biochemistry, Yenepoya School of Allied Health Sciences, Yenepoya (Deemed to be) University, Mangalore, Karnataka, India.

2. 2Yenepoya (Deemed to be) University, Mangalore, Karnataka, India.

3. 3Department of Medicine, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar, Karnataka, India.

Abstract

Neutrophils are the first to infiltrate ischemic brain regions causing the release of Neutrophil Elastase (NE), a pro-inflammatory proteinase. The activity of NE is well regulated by endogenous inhibitors alpha1-antitrypsin (α1-AT) and alpha2-macroglobulin (α2-MG). The physiological balance of elastase and anti-elastase factors is essential to maintain the normal integrity of tissues and an imbalance has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. The present study was designed to determine the plasma levels of NE, α1-AT, α2-MG, and NE–α1-AT complex to evaluate their role in inflammatory processes of ischemic stroke. The effect of homocysteine on the release of elastase from neutrophils was also studied. The study involved a total of 100 subjects (controls =60 and patients=40). Significantly higher mean elastase activity and lower α1-AT levels were observed in ischemic stroke patients than in controls. NE- α1-AT complex and α2-MG levels were significantly increased in the patient group. The in vitro study indicated homocysteine induced release of elastase from neutrophils. In conclusion, homeostasis of NE and its endogenous inhibitors is deranged in patients suggestive of their role in the pathogenesis of ischemic stroke through exacerbating inflammatory and coagulation processes.

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3