Artificial Neural Network Prediction of Optimal Phenylic acid Adsorption using Lantana camara Activated Carbon

Author:

V. Senthilkumar V. Senthilkumar1ORCID,K. K. Ilavenil K. K. Ilavenil2

Affiliation:

1. 1Department of Mechanical Engineering, SRM TRP Engineering College, Irungalur (PO), Tiruchirappalli – 621 105, Tamilnadu, India.

2. 2Department of Chemistry, Nehru Memorial College (Autonomous), Puthanampatti, / Affiliated to Bharathidasan University, Tiruchirappalli-621 007, Tamilnadu, India.

Abstract

This paper exemplifies the application of artificial neural network (ANN) for prediction of performances in adsorption of phenylic acid from waste water by conventional and low cost Lantana camara activated carbon as adsorbent material. To estimate the removal efficiencies of phenylic acid, a three-layer feed-forward neural network using a back propagation algorithm was utilised in the MATLAB environment. The initial concentrations (mg/L) of phenylic acid, amount (g/L) of adsorbent and pH are the input parameters utilised to train the neural network. The output of the neural network was taken to be the effectiveness of phenylic acid removal. Statistical measures like root mean square error and linear regression were also used to evaluate the effectiveness of the proposed ANN models. Based on the comparison of the removal efficiencies of contaminants using ANN models and empirical results, ANN modelling for the adsorption of phenolic compounds was found to be reasonably consistent with the empirical results.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3