Synthesis and Cyclooxygenase-2 Inhibitory Activity Evaluation of Some Pyridazine Derivatives

Author:

Imran Mohd1,Mohd Abida Ash1,Nayeem Naira1,Al-Otaibi Nawaf M.2,Homoud Malik3,Alshammari Muhannad Thafi3

Affiliation:

1. 1Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.

2. 2Department of Clinical Pharmacy, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.

3. 3College of Pharmacy, Northern Border University, Rafha, Saudi Arabia.

Abstract

This work aimed to discover safe and effective pyridazine-based cyclooxygenase-2 (COX-2) inhibitors. Thirty-three pyridazine-based compounds (compounds 1 to 33) were designed. The in silico studies were conducted to predict their toxicity, docking scores (DS), pharmacokinetic parameters, and drug-likeliness properties compared to celecoxib. Based on the safety and efficacy data obtained by in silico studies, four compounds (7, 12, 16, and 24) were synthesized, and the spectral analysis confirmed their chemical structures. Additionally, the in vitro COX-2 inhibitory activity of these four compounds was evaluated. Eleven compounds were predicted as non-toxic compounds. The DS of four compounds, 7 (DS = -9.72 kcal/mol), 12 (DS = -10.48 kcal/mol), 16 (DS = -9.71 kcal/mol), and 24 (DS = -9.46 kcal/mol), was better than celecoxib (DS = -9.15). These compounds (7, 12, 16, and 24) also demonstrated better oral absorption (83.53% each) than celecoxib (79.20%) in addition to their promising drug-likeliness properties. The compounds 7 (101.23%; p < 0.05), 12 (109.56%; p < 0.05), 16 (108.25%; p < 0.05), and 24 (103.90%; p < 0.05) also exhibited superior COX-2 inhibition to celecoxib (100%; p < 0.05). Compounds 7, 12, 16, and 24 are useful lead compounds in developing drugs for various diseases in which high levels of COX-2 are implicated.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3