Discovery of New Isoniazid Derivatives As Anti-tubercular Agents: In silico Studies, Synthesis, and In vitro Activity Evaluation

Author:

Mohd Abida Ash1ORCID,Imran Mohd1ORCID,Alnaser Noura Yousif2ORCID,Altimyat Shams Saud2,Altimyat Shams Saud2,Al-Otaibi Nawaf M.3,Bawadekji Abdulhakim4ORCID

Affiliation:

1. 1Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.

2. 2College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.

3. 3Department of Clinical Pharmacy, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.

4. 5Department of Biological Sciences, College of Science, Northern Border University, Arar 73222, Saudi Arabia.

Abstract

This research aimed to discover novel isoniazid (INH) derivatives as anti-tubercular (anti-TB) agents. The chemical structures of isoniazid-based pyridazinone (IBP) derivatives were designed, and their toxicity and pharmacokinetic properties were predicted using the ProTox II and Swiss-ADME databases. The molecular docking of non-toxic IBPs was also performed concerning INH, pyrazinamide (PYZ), ethionamide (ETH), macozinone (MCZ), and BTZ043 utilizing DprE1 enzyme’s proteins (PDB IDs: 4F4Q, 4NCR and 6HEZ). Based on the in silico study results, IBP19, IBP21, IBP22, and IBP29 were selected for their synthesis, and the spectral analysis confirmed their chemical structures. In vitro, anti-TB activity against Mtb H37Rv strain and MTT assay (against HepG2 and Vero cell lines) of IBP19, IBP21, IBP22, and IBP29 were also carried out. A total of eleven non-toxic IBPs were identified with promising pharmacokinetic parameters. The docking score (DS in kcal/mol against 6HEZ protein) of IBP19 (-9.52), IBP21 (-8.78), IBP22 (-9.07), and IBP29 (-9.99) was better than MCZ (-8.76) and BTZ043 (-8.56) revealing their DprE1 enzyme inhibitory action. The in vitro anti-TB activity evaluation (MIC values) confirmed that IBP19 (1.562 µg/ml), IBP21 (1.562 µg/ml), IBP22 (1.562 µg/ml), and IBP29 (1.562 µg/ml) had almost double potency than INH (3.125 µg/ml), and PYZ (3.125 µg/ml). IBP19, IBP21, IBP22, and IBP29 also displayed a CC50 value of > 300 µg/ml against HCL and VCL cell lines. This effect was better than INH (> 200 µg/ml), ETH (> 150 µg/ml), and PYZ (> 200 µg/ml). Accordingly, IBP19, IBP21, IBP22, and IBP29 provide a new template for developing safe and effective novel DprE1 inhibitors.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Environmental Chemistry,Biochemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3