An Investigation for Enhancing Registration Performance with Brain Atlas by Novel Image Inpainting Technique using Dice and Jaccard Score on Multiple Sclerosis (MS) Tissue

Author:

Faisal Fahim1,Nishat Mirza Muntasir1

Affiliation:

1. Department of Electrical and Electronic Engineering Islamic University of Technology (IUT) Boar Bazar, Gazipur-1704 Bangladesh

Abstract

This paper presents a novel approach of investigating registration performance of different Multiple Sclerosis (MS) affected brain tissues with brain atlas by image inpainting technique. MS is an immune-mediated disorder that develops from an interaction of the individual's genetics and unidentified environmental causes. In order to carry out medical diagnosis in proper time image registration plays a vital role. In this work, different MS lesions are introduced in healthy brain tissue in order to analyse and characterize according to their characteristics (T1 weighted image, T2 weighted image) because MS lesions create a strong bias in image registration process. Thus, image inpainting technique appears to be a handy tool to reduce the bias efficiently. It is evident that the proposed inpainting algorithm performs satisfactorily with a view to reducing the bias in the registration step. The overall performance of the technique is evaluated by utilizing Dice and Jaccard scores. MATLAB and FSL software are used to perform the simulation.

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Simulation of Sustainable Solar PV: A Ubiquitous Computing Approach;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

2. Investigation and Modeling of Solar PV: A Simulation Method;2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON);2024-05-27

3. Optimizing Maternal Mental Health: A Study on Boosting Algorithms for Suicidal Tendencies Prediction in Postpartum Depression;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

4. A Comparative Diagnostic Study for Using the Contrast Agent in Active and Non-Active Multiple Sclerosis by Region of Interest Parameter;Biomedical and Pharmacology Journal;2023-12-31

5. Sensorimotor Activity Patterns using Machine Learning: Assessing the Impact of Auditory Timing Perception and Comparing Different Algorithms;2023 IEEE 8th International Conference on Recent Advances and Innovations in Engineering (ICRAIE);2023-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3