Evaluation of Conducting and Tensile Properties of Reduced Graphene Oxide/ Polybutylene Adipate Terephthalate (Rgo/Pbat) Nanocomposites

Author:

Nayanajith L. D. C.1ORCID,De Silva R. C. L.1ORCID,S. R. Rosa S. R. Rosa2ORCID,Kottegoda I. R. M.1ORCID

Affiliation:

1. 1Material Technology Section, Industrial Technology Institute, Colombo 07, Sri Lanka.

2. 2Department of Physics, University of Colombo, Colombo Sri Lanka.

Abstract

This study was focused on evaluation of conducting and tensile properties of rGO/ Polybutylene adipate terephthalate (PBAT) nanocomposite intended to use in electronic applications which require biodegradability. This study was also considered to be worthwhile since very little work has been done in this regard so far. PBAT was specifically selected for the study as it is an extensively used biodegradable polymer for variety of applications. The solvent casting method was employed to prepare rGO/PBAT nanocomposites where rGO was dispersed in a solution of PBAT by ultrasonication followed by evaporation of the solvent components. Electrical conductivity (σ) of rGO/PBAT nanocomposites showed a percolation behavior as rGO content was increased from the 0.5 % to 1.5 % (σ increased drastically with the increase of rGO content). The percolation threshold was approximately 0.0045, (i.e., 0.75 w/w % of rGO). The average critical exponent (t) related to the percolation theory was 1.49 ± 0.19 which is well within the expected range 1< t < 2. According to impedance studies, the electrical impedance of GO/PBAT composites decreased with the increasing rGO content, which agreed well with the behavior of the electrical conductivity investigated previously. The same equivalent circuit was shown by each composite except the values for constant phase element CPE and resistor R; the equivalent electrical circuit was a parallel combination of CPE and R. The dielectric analysis of the composites indicated that dielectric parameters ϵ”, ϵ’ and dissipation factor increased significantly with increasing rGO content. The tensile strength of the composites was better than that of neat PBAT up to 1.5 % of rGO loading and decreased on further increasing of rGO. However, their tensile strain at break decreased with increasing rGO content. The results indicated that PBAT/rGO polymer composite is promising candidate for various electronic applications.

Publisher

Oriental Scientific Publishing Company

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3