Formulation and Characterization of Nanoparticle-Protein Sirtuin 1 (NPS1) by Nanoprecipitation Technique

Author:

Wihastuti Titin Andri1ORCID,Chomsy Indah Nur2ORCID,Cesa Fibe Yulinda3,Sujuti Hidayat4ORCID,Nurwidyaningtyas Wiwit2,Kumboyono Kumboyono5ORCID

Affiliation:

1. 1Basic Nursing Department, Faculty of Health Sciences, University of Brawijaya, Malang, Indonesia.

2. 2Doctoral Program of Medical Science, Faculty of Medicine, University of Brawijaya, Malang, Indonesia

3. 3Master Program in Biomedical Science, Faculty of Medicine, Brawijaya University, Malang, Indonesia

4. 4Department of Biomolecular-Ophtalmology, Faculty of Medicine, University of Brawijaya, Malang, Indonesia

5. 5Nursing Department, Faculty of Health Sciences, University of Brawijaya, Malang, Indonesia

Abstract

Atherosclerosis is a cardiovascular disease caused by endothelial dysfunction. This situation will trigger the bone marrow to immediately replace it with new endothelial progenitor cells (EPC) cells. However, some studies suggest that EPC can experience premature senescence. Sirtuin-1 (SIRT1) is a cellular post-translational protein that has the task of repairing dysfunctional EPC cells. Studies have tried to develop SIRT1 activation, but currently, there are no studies that have attempted to increase SIRT1 levels in cells. Nanoparticles (NPS) are one of the methods in nanomedicine, which has the advantage of being a drug carrier. So, further research is needed on adding exogenous SIRT1 levels, NPS, which can improve the quality of EPC cells and prevent premature senescence. This study aims to report the formulation and characterization stages of nanoparticles carrying SIRT1 (NPS1) with different solvents, such as ethanol and aquadest. The method used in this formulation uses nanoprecipitation. The characterization of nanoparticles at this stage included organoleptic tests, pH tests, and quantifying using Nanodrops in determining the presence of adsorbed proteins. The pH and organoleptic test showed that the NPS1 formulation was acidic (K1 = 5.412 ± 0.73; K2 = 3.624 ± 0.45; F1 = 5.418 ± 0.55; F2 = 4.182 ± 0.07), yellow in color, and had a characteristic odor. Thus, the formulation and characteristics of NPS1 can be used as a method in drug development for anti-senescence therapy in EPC cells in further research, both in vitro, in vivo, and evaluation of preparations that are still very possible to be developed.

Publisher

Oriental Scientific Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3