Drug Repurposing and Molecular Insights in the Fight Against Breast Cancer

Author:

Mani Ruchi Jakhmola-1ORCID,Sharma Vikash1ORCID,Singh Sohini1ORCID,Allen Tanu1ORCID,Dogra Nitu2ORCID,Katare Deepshikha Pande1ORCID

Affiliation:

1. 1Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida. India.

2. 2Analytics Research Division, Research Boulevard Technologies, Sector 27, Greater Noida, Uttar Pradesh, India.

Abstract

Breast Cancer (BC) is a complex disease with high incidence in developed countries. According to the World Health Organization (WHO), it is accounted for 11.7% of all new cancer cases worldwide in 2020, with an estimated 2.3 million new diagnosis every year. A 2.5% annual reduction in the disease mortality could prevent 2.5 million deaths worldwide between 2020 and 2040. In the current work systematic review was conducted for drugs under clinical trials or approved for treatment of BC. It was observed that many drugs were repurposed for BC treatment over the course of time even though they were originally developed for some other disease. This is called as Drug Repurposing. It is an approach that has gained significant attention in recent years as a promising alternative to traditional drug discovery, which is often costly, time-consuming, and has a high failure rate. Thirteen drugs were observed to be repurposed for BC treatment and we dig deep into their molecular background and reasons for their efficacies in BC treatment. Molecular targets of these drugs in the human system were predicted and protein interaction networks were analysed to work out the genes responsible for their repurposed events. Few genes seen in the disease progression, were BRCA1, BRCA2, PALB-2, ATM, TP53, PTEN, and HER2/neu participate in various biological pathways, such as the PI3K/Akt/mTOR and ER pathways, and biological processes such as the tumor microenvironment, epithelial-mesenchymal transition, and DNA damage response pathways. Mutations or alterations in these genes or pathways can lead to the development and progression, and understanding their roles that can help in the development of new diagnostic and therapeutic strategies. This study offers an in-silico perspective and a powerful tool to find potentially effective drugs by analysing the molecular mechanisms and signalling pathways involved in the disease progression.

Publisher

Oriental Scientific Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3