Biogenic Synthesis of Selenium Nanoparticles using Diospyros montana Bark Extract: Characterization, Antioxidant, Antibacterial, and Antiproliferative Activity

Author:

Puri Abhijeet1ORCID,Patil Swati1ORCID

Affiliation:

1. Department of Pharmacognosy, K M Kundnani College of Pharmacy, Cuffe Parade, Mumbai-400005 (M.S.) India.

Abstract

Selenium nanomaterials (Nano-Se) are new selenium sources with excellent biocompatibility, degradability, and bioactivities. The objective of the present study is the green synthesis of selenium nanoparticles (SeNPs) using Diospyros montana Roxb (DM) bark extract, its characterization, and evaluation for in-vitro antioxidant, antibacterial and anticancer activities. To synthesize Diospyros montana- selenium nanoparticles (DM-SeNPs), selenious acid (H2SeO3) was reduced using D. montana extract via precipitation technique. UV-Vis, FTIR, XRD, SEM, EDAX, and ICP-AES were used to characterize DM-SeNPs. The DPPH free radical scavenging assay and reducing power capacity were used to test DM-SeNP for antioxidant activity. The antibacterial properties of the DM-SeNP were tested using the well diffusion method against gram-positive and gram-negative microorganisms. DM-SeNPs were also subjected to antiproliferative activity using MTT assay via MCF-7 cell line. A peak in UV at 289 nm validated the synthesis of DM-SeNPs. According to DLS, SEM, and TEM images, the size of DM-SeNPs was between 100-150 nm. XRD analysis confirmed the crystallinity of DM-SeNPs. Selenium was verified in colloidal dispersion using EDAX analysis, and ICP-AES confirmed selenium content 63.45 ±18.3 µg/mL in DM-SeNP. The IC50 24.72 ± 0.63 µg/mL and EC50 46.30 ± 0.21 µg/mL values indicated that the DM-SeNPs had a good antioxidant capacity. DM-SeNPs showed comparative better antibacterial potential. The inhibition zones were found to be the highest for E. coli (48.00 mm), B. subtilis (44.14 mm), Klebsiella pneumonia (36.20 mm), and S. aureus (34.16mm), respectively. Antiproliferative activity was carried out, which showed DM-SeNPs were cytotoxic to breast cancer cells line (MCF-7). The IC50 values for DM-SeNPs were found to be 38.19 ± 0.27 µg/mL and Doxorubicin 6.41 ± 0.09 µg/mL, respectively. The study suggests that DM-SeNPs display moderate cytotoxicity that could dose-dependently inhibit cell proliferation. Thus, experimental evidence provides insight into selenium nanoparticle synthesis, its potential therapeutic value, and the prospect of developing a formulation containing DM-SeNPs.

Publisher

Oriental Scientific Publishing Company

Subject

Drug Discovery,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3