Introducing Social Semantic Journalism

Author:

Rahmanzadeh Heravi Bahareh,McGinnis Jarred

Abstract

In the event of breaking news, a wealth of crowd-sourced data, in the form of text, video and image, becomesavailable on the Social Web. In order to incorporate this data into a news story, the journalist mustprocess, compile and verify content within a very short timespan. Currently this is done manually andis a time-consuming and labour-intensive process for media organisations. This paper proposes SocialSemantic Journalism as a solution to help those journalists and editors. Semantic metadata, natural languageprocessing (NLP) and other technologies will provide the framework for Social Semantic Journalismto help journalists navigate the overwhelming amount of UGC for detecting known and unknown newsevents, verifying information and its sources, identifying eyewitnesses and contextualising the event andnews coverage journalists will be able to bring their professional expertise to this increasingly overwhelminginformation environment. This paper describes a framework of technologies that can be employed byjournalists and editors to realise Social Semantic Journalism.

Publisher

University of Oslo Library

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3