Studies in Rheoencephalography (REG)

Author:

Bodo Michael1

Affiliation:

1. Naval Medical Research Center , Silver Spring, MD , USA

Abstract

Abstract This article presents an overview of rheoencephalography (REG) – electrical impedance measurements of the brain – and summarizes past and ongoing research to develop medical applications of REG for neuro-critical care and for primary prevention of stroke and cardiovascular disease. The availability of advanced electronics and computation has opened up the potential for use of REG technology as a noninvasive, continuous and inexpensive brain monitor for military and civilian applications. The clinical background information presented here introduces physiological and clinical environments where REG has potential for use in research and clinical settings. REG studies over the past three decades have involved in vitro and in vivo groups (animal and human), including more than 1500 measurements and related electronic and computational results and practical applications. In vitro studies helped researchers understand the flow/volume relationship between Doppler ultrasound and electrical impedance signals and supported development of REG data processing methods. In animal studies, REG was used to monitor the lower limit of cerebral blood flow (CBF) autoregulation (AR) using a newly developed algorithm. These animal studies also confirmed correlations between REG and measurements of carotid flow (CF) and intracranial pressure (ICP). Human studies confirmed the applicability of REG for detecting cerebrovascular alteration, demonstrating the usefulness of REG in the field of stroke/cardio-vascular disease prevention. In these studies, REG was compared to known stroke risk factors and to results obtained using carotid ultrasound measurements. An intelligent REG system (Cerberus) has been developed for primary stroke prevention. In these studies, the biologically relevant variables of the REG signal were pulse amplitude (minimum – maximum distance) and duration of the anacrotic (rising) portion of the REG pulse wave. The principal limitation of REG for clinical application is the lack of pathological and physiological correlations. The studies presented here have initiated such inquiries, but many clinical questions about the pathophysiological background of REG remain unanswered. These results demonstrate that REG development is a multidisciplinary subject with relevance for medicine (vascular neurology and neurosurgery intensive care); electronic engineering; mathematics, and computer science (data processing). It is hoped that information presented in this article will provide assistance to those involved in REG research, particularly in development and clinical applications.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering,Biophysics

Reference122 articles.

1. Benabid AL, Balme L, Persat JC et al. Electrical impedance brain scanner: principles and preliminary results of simulation. TIT J Life Sci. 1978;8:59-68.741464

2. Anonymus. Solicitation: OSD09-H06 Neuromonitoring of traumatic brain/blast injury. Office of the Secretary Of Defense Small Business Innovation Research (SBIR) FY2009.3 http://www.acq.osd.mil/osbp/sbir/solicitations/sbir093/osd093.htm

3. Anonymous. Rheoencephalography. In: Grimnes S, Martinsen OG, editors. Bioimpedance and bioelectricity basics, 2nd ed. Elsevier, Amsterdam, pp 351—353. 2008.

4. Rubin M, Yo M, Agostini M A, Madden J, Diaz-Arrastia RR. Noninvasive Monitoring. In: Jallo J, Loftus CM editors. Neurotrauma and critical care of the brain, Thieme, New York, 2009.

5. Patterson R. Bioelectric impedance measurement. In: Bronzino JD, editor. The biomedical engineering handbook. Boca Raton: CRC Press; 1995. pp 1223-1230.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3