Assessing Creditworthiness in the Age of Big Data

Author:

Hohnen Pernille,Ulfstjerne Michael Alexander,Krabbe Mathias Sosnowski

Abstract

The purpose of this article is twofold: first, we show how algorithms have become increasingly central to financial credit scoring; second, we draw on this to further develop the anthropological study of algorithmic governance. As such, we describe the literature on credit scoring and then discuss ethnographic examples from two regulatory and commercial contexts: the US and Denmark. From these empirical cases, we carve out main developments of algorithmic governance in credit scoring and elucidate social and cultural logics behind algorithmic governance tools. Our analytical framework builds on critical algorithm studies and anthropological studies where money and payment infrastructures are viewed as embedded in their specific cultural contexts (Bloch and Parry 1989; Maurer 2015). The comparative analysis shows how algorithmic credit scoring takes different forms hence raising different issues in the two cases. Danish banks seem to have developed a system of intensive, yet hidden credit scoring based on surveillance and harvesting of behavioural data, which, however, due to GDPR takes place in restricted silos. Credit scores are hidden to customers, and therefore there has been virtually no public debate regarding the algorithmic models behind scores.  In the US, fewer legal restrictions on data trading combined with both widespread and visible credit scoring has led to the development of a credit data market and widespread use of credit scoring by ‘affiliation’ on the one hand, but also to increasing public and political critique on scoring models on the other.

Publisher

University of Oslo Library

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Big Data Technology in the Process of Communication Transformation;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

2. FinTech in Banking: Bibliometric and Content Analysis;Contemporary Studies of Risks in Emerging Technology, Part A;2023-05-10

3. Immersive college English teaching design based on big data;Second International Conference on Cloud Computing and Mechatronic Engineering (I3CME 2022);2022-09-28

4. SM-PageRank Algorithm-Based User Interest Model for Mobile Smart Tourism Platform;Wireless Communications and Mobile Computing;2022-01-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3