Exploring the Capability of Indonesia Natural Medicine Secondary Metabolite as Potential Inhibitors of SARS-CoV-2 Proteins to Prevent Virulence of COVID-19: In silico and Bioinformatic Approach

Author:

Cahyono Bambang,Amalina Nur Dina,Suzery Meiny,Nur Wahyu Bima Damar

Abstract

BACKGROUND: SARS-CoV-2 was causing COVID-19 disease resulting in many deaths and being a significant concern in the world today. There is an emergent need to search for possible medications for COVID-19 treatment. The key point to halt SARS-CoV-2 infection through inhibition of the virus-receptor interaction and stimulates the immune system. Utilization of the bioinformatic and in silico molecular docking a number of available medications might be proven to be effective in inhibiting SARS-CoV-2 main drug targets including the SARS-CoV2 spike glycoprotein, the 3CL protease SARS-CoV-2 active target, PD-ACE2, 2019-nCoV PLpro, and NF-kβ. AIM: This present study was conducted to identify the potential target and molecular mechanism of the major compound on Alpinia galanga extract and Citrus sinensis (L.) extract in circumventing COVID-19 using a bioinformatics approach and in silico molecular docking. RESULTS: Direct protein target of all secondary metabolite and the gene list from PubMed “Severe acute respiratory syndrome coronavirus 2” generated 2 genes (CCL2 and VEGFA) as potential therapeutics target genes (PTTG). The molecular docking was conducted by the Protein-Ligand Ant System (PLANTS) software. The results show that hesperidin, naringenin, and galangin have lower docking score for all five-protein target receptor compared with chloroquine and remdesivir. The lower docking score suggests a high affinity to bind the protein. Moreover, these compounds have a strong affinity in their inhibitory capacity for viral infection. CONCLUSION: In general, this study’s findings show that the compound of Alpinia galanga extract dan Citrus sinensis (L.) extract exhibit the best potential as an inhibitor to the development of the SARS-CoV-2 and inhibited cytokine storm through inactivation NF-kβ _pathway.

Publisher

Scientific Foundation SPIROSKI

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3