Study of Lipid Peroxidation-antioxidant Defense Systems in Rats under Radiation Exposure

Author:

Okassova Assem K.ORCID,Britko ValeriyORCID,Okassov Didar B.ORCID,Tatina Yelena S.ORCID,Tolegenova Akerke I.,Kuvatbaeva Kuttykyz N.,Kaliyeva Gulzhan T.ORCID,Zhunussova MadinaORCID,Duzbaeva NaziraORCID

Abstract

Abstract BACKGROUND: Experimental data on the effect of a high dose of gamma radiation 6 Gy on the activity of antioxidant defense enzymes and lipid peroxidation products (LPO) are presented immunocompetent organs in the body of animals in the experiment. It was found that the effect of ionizing radiation led to an increase in the level of diene conjugates (DC) and malondialdehyde (MDA), inhibition of the activity of catalase (CАT) and glutathione peroxidase (GlP), glutathione reductase (GlR) enzymes in almost all the studied objects, as a result of which the development of oxidative stress was observed in them. The results of the study indicate serious changes in the lipid peroxidation and antioxidant system (AOS) under radiation stress. An imbalance of POL-AOS creates prerequisites for the occurrence of immunopathological conditions, contributing to the development of radiation-related tumor infection. pathologies. Violations of functional relationships of the catalytic redox system. AIM: The aim of the study was to study the effect of radiation at a dose of 6 Gy on the parameters of lipoperoxidation and the antioxidant system in experimental rats. MATERIAL AND METHODS: The work was carried out on 20 male Wistar rats weighing 240 ± 20 g. Experimental animals are divided into two groups: I - normal group; II - group exposed to γ-rays at a dose of 6 Gy. RESULTS: After radiation exposure, all objects showed a tendency to increase the product of lipid peroxidation. As is known, the activation of lipid peroxidation is based on excessive generation of reactive oxygen species, which exceeds the physiological capabilities of antioxidant systems that occur after the depletion of enzyme systems. CONCLUSION: Based on the results obtained, it was found, that irradiation increases the intensity of the formation of POL products and their accumulation, reduces the activity of enzymes of the antioxidant system in immunocompetent organs in irradiated animals, as a result, the lack of the antioxidant system causes oxidative stress in the body.

Publisher

Scientific Foundation SPIROSKI

Subject

General Medicine

Reference21 articles.

1. Yarmonenko SP. Chernobl we look back to go forward. In: Medical Radiology and Radiation Safety. Vol. 5. Atomizdat Publishing House, Moscow; 2005. p. 77-80.

2. Chulenbayeva L, Ilderbayev O, Taldykbayev Z, Ilderbayeva G, Argynbekova A. Phytocorrection of immunological and biochemical changes in the combined impact of coal dust and high dose of radiation. Georgian Med News. 2018;2(275):141-50. PMid:29578440

3. Wilson PF. Magnification of inter-individual variation in biological responses after low doses and dose-rates of ionizing radiation. Health Phys. 2016;110(3):296-8. https://doi.org/10.1097/HP.0000000000000453 PMid:26808888

4. Tapbergenov SO, Zhetpisbaev BA, Ilderbayev OZ, Usenova OA, Ilderbayeva GO. Free radical oxidation in rats in the delayed period after combined exposure to dust and radiation. Bull Exp Biol Med. 2013;154(6):747-9. https://doi.org/10.1007/s10517-013-2046-z PMid:23658914

5. Ilderbayeva G, Zhetpisbaev B, Ilderbayev O, Taldykbayev Z, Bekeeva S. Metabolic processes of organism in remote period after the combined effects of radiation and emotional stress. Georgian Med News. 2016;250:76-82. PMid:26870980

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3