Effect of Diode Laser versus a Combination of Sodium Trimetaphosphate with Polyacrylic Acid on Obliteration of Dentinal Tubules: An In Vitro Study

Author:

Darwish Mostafa Abd El-hakim,Abo-Elezz Ahmed Fawzy,Safy Rehab Khalil

Abstract

BACKGROUND: Irradiation with diode laser and biomimetic remineralization are important methods in the treatment of hypersensitivity and dentin remineralization. AIM: The aim of the study was evaluation of the effect of diode laser versus the effect of sodium trimetaphosphate (STMP) with polyacrylic acid (PAA) on obliteration of dentinal tubules (DT). MATERIALS AND METHODS: Sixty dentin discs with a thickness of 2 mm were prepared and conditioned with EDTA for 15 s. Then, all dentin discs were divided into three main groups (20 discs each) according to the treatment method; control, diode laser treated, and STMP with PAA group (biomimetic group). Each group was subdivided into four subgroups (five discs each) according to the storage time; 2 h (To), 1 month (T1), 2 months (T2), and 3 months (T3), respectively. All samples were prepared to be analyzed after each time interval using environmental scanning electron microscope (ESEM). Comparison of differences of DT obliteration percentage made on each group before and after the treatment were performed using computer-assisted digital image analysis. RESULTS: Control group showed the least DT obliteration percentage, the samples of laser group recorded statistically significant increase in DT obliteration percentage at To in comparison to the biomimetic group. Meanwhile, at T1, there was no statistically significant difference between both laser and biomimetic groups. However, statistically significant decrease was recorded in laser group at T2 and T3, respectively. CONCLUSION: Irradiation with diode laser and biomimetic remineralization using PAA with STMP are a promising methods to obliterate opened DT effectively.

Publisher

Scientific Foundation SPIROSKI

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3