Effects of Red-Fleshed Pitaya (Selenicereus polyrhizus) Ingestion after Strenuous Exercise on Creatine Kinase and Mitochondrial Function in Rat Muscle Cells

Author:

Rusip Gusbakti,Ilyas Syafrudin,Lister I Nyoman,Ginting Chrismis Novalinda,Mukti Ade Indra,Girsang Ermi

Abstract

BACKGROUND: Free radicals formed during strenuous exercise through an increase in reactive oxygen species induce damage to tissues (e.g., muscle and liver) and cause oxidative damage to cells, resulting in mitochondrial dysfunction. AIM: As an effective method to repair mitochondrial muscle cell function, this study investigated the effects of red-fleshed pitaya (RFP) ingestion on creatine kinase (CK), which is a biomarker for muscle tissue damage, and malondialdehyde (MDA) levels during strenuous exercise. METHODS: This study involved 25 3-month-old male rats with an average weight of 200 g. The RFP extract was obtained through ethanol extraction and concentrated using an air-drying method. Rats were randomly allocated into five groups as follows: Two control groups (K1 [no-exercise, no RFP] and K2 [exercise, no RFP]) and three test groups (P1, P2, and P3; subjected to exercise and treated with 75, 150, and 300 mg kg−1 body weight of RFP, respectively). The exercise was in the form of swimming for 20 min 3 times/week for 31 days. CK and MDA were measured through an enzyme-linked immunosorbent assay, and histopathological examinations were performed through hematoxylin and eosin staining of rat muscles. RESULTS: The MDA levels after the ingestion of RFP extracts were compared between the K2 group and the P1, P2, and P3 groups. The results showed significant differences (p < 0.05 for P1 and P2, and p < 0.01 for P3), indicating the production of free radicals and CK, with features of damaged muscle cells based on histopathology. Ingestion of the RFP extract led to improvements in soleus muscle cells, resulting in cell function repair. CONCLUSION: Levels of MDA and CK increased during exercise, which caused significant muscle damage. However, after treatment with the RFP extract, the levels of both markers decreased. Thus, strenuous exercise causes an increase in reactive oxygen species, resulting in increased free radical levels. RFP ingestion decreased oxidative stress levels, thus repairing mitochondrial cell function.

Publisher

Scientific Foundation SPIROSKI

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3