The Effect of Eurycoma longifolia Jack Tongkat Ali Hydrogel on Wound Contraction and Re-Epithelialization in In Vivo Excisional Wound Model

Author:

Al-Bayati Maryam Riyadh Yaseen,Hussein Yahia F.,Faisal Ghasak G.,Fuaat Azliana Abd,Affandi Khairunisa Ahmad,Abidin Muhammad Adil Zainal

Abstract

BACKGROUND: Wound management is one of the significant health problems throughout the world. Medicinal plants have been used widely in wound management. Eurycoma longifolia Jack which is known as Tongkat Ali (TA) is a tropical medicinal plant in South East Asian countries. AIM: The aim of the study was to investigate the effect of (TA) hydrogel on wound contraction and re-epithelialization in excisional wound model in rats. METHODS: Twenty male Sprague Dawley rats were divided into four groups each group contained five rats (n = 5). Animal treatment groups are formed as: Untreated (−ve) control, Hydrocyn® aqua gel (+ve), vehicle hydrogel, and (TA) hydrogel. A full-thickness circular excisional wound was created on the dorsal back of each rat. The wounded area was measured and photographed on days 3, 6, 9, 12, 15, and 18 post wounding to determine the percentage of wound contraction and re-epithelialization. RESULTS: (TA) hydrogel showed significant increase in the percentage of wound contraction by 43.38% compared with the other groups (p = 0.032, p < 0.050) during the first interval (inflammatory phase). Although in the later healing stages (proliferative and remodeling) and re-epithelialization, our test group (TA) hydrogel did not show statistically difference with the other groups yet it was comparable to medically certified wound healing agent. CONCLUSION: (TA) hydrogel significantly accelerated the wound healing process during the early stage, the inflammatory stage. Whereas during the later healing stages and re-epithelialization, it showed almost the same effect of Hydrocyn® aqua gel.

Publisher

Scientific Foundation SPIROSKI

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3