Feeding the troll detection algorithm

Author:

Achimescu Vlad,Sultanescu Dan

Abstract

The authenticity of public debate is challenged by the emergence of networks of non-genuine users (such as political bots and trolls) employed and maintained by governments to influence public opinion. To tackle this issue, researchers have developed algorithms to automatically detect non-genuine users, but it is not clear how to identify relevant content, what features to use and how often to retrain classifiers. Users of online discussion boards who informally flag other users by calling them out as paid trolls provide potential labels of perceived propaganda in real time. Against this background, we test the performance of supervised machine learning models (regularized regression and random forests) to predict discussion board comments perceived as propaganda by users of a major Romanian online newspaper. Results show that precision and recall are relatively high and stable, and re-training the model on new labels does not improve prediction diagnostics. Overall, metadata (particularly a low comment rating) are more predictive of perceived propaganda than textual features. The method can be extended to monitor suspicious activity in other online environments, but the results should not be interpreted as detecting actual propaganda.

Publisher

University of Illinois Libraries

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trolling CNN and Fox News on Facebook, Instagram, and Twitter;Journal of the Association for Information Science and Technology;2023-03-18

2. What makes an Internet troll? On the relationships between temperament (BIS/BAS), Dark Triad, and Internet trolling;Cyberpsychology: Journal of Psychosocial Research on Cyberspace;2022-11-29

3. Hierarchical Cyber Troll Detection with Text and User Behavior;2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC);2021-11-17

4. Raising the Flag: Monitoring User Perceived Disinformation on Reddit;Information;2020-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3