Leveraging Informatics and Technology to Support Public Health Response: Framework and Illustrations using COVID-19

Author:

Snowdon JaneORCID,Kassler William,Karunakaram Hema,Dixon Brian,Rhee Kyu

Abstract

Objective: To develop a conceptual model and novel, comprehensive framework that encompass the myriad ways informatics and technology can support public health response to a pandemic. Method: The conceptual model and framework categorize informatics solutions that could be used by stakeholders (e.g., government, academic institutions, healthcare providers and payers, life science companies, employers, citizens) to address public health challenges across the prepare, respond, and recover phases of a pandemic, building on existing models for public health operations and response. Results: Mapping existing solutions, technology assets, and ideas to the framework helped identify public health informatics solution requirements and gaps in responding to COVID-19 in areas such as applied science, epidemiology, communications, and business continuity. Two examples of technologies used in COVID-19 illustrate novel applications of informatics encompassed by the framework. First, we examine a hub from The Weather Channel, which provides COVID-19 data via interactive maps, trend graphs, and details on case data to individuals and businesses. Second, we examine IBM Watson Assistant for Citizens, an AI-powered virtual agent implemented by healthcare providers and payers, government agencies, and employers to provide information about COVID-19 via digital and telephone-based interaction. Discussion: Early results from these novel informatics solutions have been positive, showing high levels of engagement and added value across stakeholders. Conclusion: The framework supports development, application, and evaluation of informatics approaches and technologies in support of public health preparedness, response, and recovery during a pandemic. Effective solutions are critical to success in recovery from COVID-19 and future pandemics. 

Publisher

University of Illinois Libraries

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3