A Comprehensive Survey of Deep Learning Techniques Natural Language Processing

Author:

Praful Bharadiya Jasmin

Abstract

In NLP research, unsupervised or semi-supervised learning techniques are increasingly getting more attention. These learning techniques are capable of learning from data that has not been manually annotated with the necessary answers or by combining non-annotated and annotated data. This essay presents a survey of various natural language processing methods. The discipline of natural language processing, which integrates linguistics, artificial intelligence, and computer science, was established to make it easier for computers and human language to communicate with one another. It is, as we can say, relevant psychopathology for the study of computer-human interaction. The understanding of natural language, which entails enabling machines to naturally interpret human language, is one of the many challenges this area faces. Discourse analysis, morphological separation, machine translation, production and understanding of NLP, part-of-speech tagging, recognition of optical characters, speech recognition, and sentiment analysis are some of the most frequent NLP tasks. As opposed to learning, which is supervised and typically yields few correct results for a given amount of input data, this job is typically quite difficult. However, there is a sizable amount of data available that is unannotated in nature, i.e. the entire contents are available on the internet, and it typically yields less accurate findings.  

Publisher

AJPO JOURNALS

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovations in Cloud Storage;Advances in Computational Intelligence and Robotics;2024-08-21

2. Cross-modal guides spatio-temporal enrichment network for few-shot action recognition;Applied Intelligence;2024-08-13

3. Study on the Recognition of Metallurgical Graphs Based on Deep Learning;Metals;2024-06-20

4. Research on corpus analysis based on big data;2024 2nd International Conference on Mechatronics, IoT and Industrial Informatics (ICMIII);2024-06-12

5. A hybrid convolutional neural network and support vector machine classifier for Amharic character recognition;Neural Computing and Applications;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3