Abstract
В статье описываются возможности и ограничения использования в социологии новых источников данных и методов их сбора, обработки и анализа, а именно — цифровых следов и методов машинного обучения. Сначала обсуждаются недостатки классических источников данных — опросов, а затем, в контексте этих недостатков, на основе релевантных исследований анализируются возможности их преодоления с помощью цифровых следов. В качестве главных недостатков опросных данных, которым, в свою очередь, меньше подвержены цифровые следы, выделяются: реактивность, небольшой объем данных и редкая частотность. В контексте описания этих недостатков и способов их преодоления с помощью цифровых следов мы приводим типы исследовательских вопросов, на которые можно ответить только с помощью цифровых следов. После этого рассматриваем ограничения цифровых следов: нерепрезентативность, конструктную валидность, внешние и внутренние вмешивающиеся факторы, нестационарность. Затем, на основе актуальных методологических статей, мы описываем, как учитывать эти ограничения и по возможности корректировать их.
Благодарность. Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-311-90056.
Publisher
VCIOM, Russia (Russian Public Opinion Research Center)
Subject
Economics, Econometrics and Finance (miscellaneous),Sociology and Political Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献