Establishing an Ocean Acidification Monitoring System for the Tropical Waters of Indonesia Facing Regional Climate Variability

Author:

Prayitno Hanif Budi,Puspitasari Rachma,Jandang Suppakarn,Triana Karlina,Taufiqurrahman Edwards,Lestari ,Afdal ,Wulandari Ita,Harmesa ,Meirinawati Hanny,Lastrini Suci,Kaisupy Muhamad Taufik,Wahyudi A'an JohanORCID

Abstract

The emission of greenhouse gases, including high CO2 and other materials, initiates global warming and climate change. Atmospheric CO2 that affects the carbonate system of seawater causes ocean acidification (OA). OA affects marine organisms directly, as well as humans economically and ecologically. Considering the high impact of OA and following the United Nations' Sustainable Development Goals, systematic research and monitoring of OA is necessary in Indonesia, whose seas play an important role in this emerging phenomenon. This review discusses the urgency of OA monitoring systems and suggests carbonate system monitoring, as well as carbon biogeochemistry. OA significantly affects marine production and alters ecosystem services, and it is likely to have an impact on habitats shifting from calcified to non-calcified and reducing benthic complexity. Its effect on calcifying organisms can also be found, i.e., coral calcification and/or dissolution of CaCO3 of calcifying organisms. Acidity (pH), as well as the carbonate system variables of seawater, fluctuate, especially with variations in space and time. Coastal ecosystems that are directly affected by terrestrial input will have carbonate system variables that fluctuate more. The annual rate of decreasing seawater pH, especially over an open and large spatial scale, may indicate OA. Therefore, a monitoring system must be implemented to obtain systematic and comprehensive information on OA. Here, we also introduce a biogeochemical monitoring initiative for OA in Lombok with the established protocols. Improvement of many aspects, including analysis instruments, analysis methods, sample treatment, and sampling frequency will provide new insight into further research and monitoring of OA.

Publisher

UGM Press

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Waste Management and Disposal,Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The behaviour of particulate trace metals in marine systems: A review;Marine Environmental Research;2024-11

2. Spatial variability of aragonite saturation state (Ωarag) in Indonesian coastal waters;Marine Environmental Research;2024-03

3. Variation of CO2 fluxes, net ecosystem production, and calcification in tropical waters of seagrass and coral reef;Regional Studies in Marine Science;2023-12

4. Marine Protected Area management under the impacts of climate change and increased human activities in marine ecosystems: A review for Anambas Islands MPA;IOP Conference Series: Earth and Environmental Science;2023-05-01

5. Depth estimation model of shallow-tropical seawaters based on remote sensing data and BatNas;PROCEEDINGS OF THE SYMPOSIUM ON ADVANCE OF SUSTAINABLE ENGINEERING 2021 (SIMASE 2021): Post Covid-19 Pandemic: Challenges and Opportunities in Environment, Science, and Engineering Research;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3