Affiliation:
1. Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, India
Abstract
Aim:
Utilizing the therapeutic potentials of previously approved medications against a new target or pharmacological response is known as drug repurposing. The health and scientific communities are under continual pressure to discover new compounds with antiviral potential due to the rising reports of viral resistance and the occurrence and re-emergence of viral outbreaks. The use of antiviral peptides has emerged as an intriguing option in this search. Here, this article includes the current United States Food and Drug Administration (FDA)-approved antiviral peptides that might be enforced for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and carried out docking study of the viral protease inhibitors.
Methods:
In silico techniques like molecular docking was carried out using Autodock Vina software.
Results:
The molecular docking studies of peptide-based antiviral agents against SARS-CoV-2 [Protein Data Bank (PDB) ID: 7P35] using docking software AutoDockTools 1.5.6. Among all the docked ligands, compound velpatasvir showed interaction with residues ILE213, GLN256, LEU141, GLN189, GLU166, HIS41, CYS145, and ASN142, and displayed the highest docking score of –8.2 kcal/mol. This medication could be a novel treatment lead or candidate for treating SARS-CoV-2.
Conclusions:
To conclude, a docking study of peptide based antiviral compounds for their binding mode in the catalytic domain of SARS-CoV-2 receptor is reported. On molecular docking, the compounds have showed remarkable binding affinity with the amino acids of receptor chain A. The compounds occupied the same binding cavity as the reference compound maintaining the interactions with conserved amino acid residues essential for significant inhibitory potential, especially for compound velpatasvir with binding score of –8.2 kcal/mol.
Publisher
Open Exploration Publishing