Oxidative stress and inflammation: the root causes of aging

Author:

Prasert Sobhon1ORCID,Gavin Savedvanich2,Sawaek Weerakiet3ORCID

Affiliation:

1. Department of Anatomy, Faculty of Science, Mahidol Universit, Bangkok 10400, Thailand

2. NIST International School, Bangkok 10110, Thailand

3. Department of Obstetrics and Gynecology, Bangkok Hospital Udon, Udon Thani Province 41000, Thailand

Abstract

Oxygen free radicals [reactive oxygen species (ROS)] and nitrogen free radicals [reactive nitrogen species (RNS)] are generated by mitochondria during adenosine triphosphate synthesis, and catalytic activities of cytochrome P450, nicotinamide adenine dinucleotide phosphate oxidases (NOXs), cyclooxygenases, and nitric oxide synthases during drug catabolism, phagocytosis, and acute inflammation. Under normal circumstances, low levels of ROS and RNS provide redox signalings that control many essential physiological processes. As age progresses ROS and RNS increase excessively due to dysfunctional mitochondria, dysregulated NOX, and other free-radical generating sources, leading to oxidative stress, which causes oxidation and denaturation of key cellular components including DNA, proteins, and lipids, which become abnormal, constituting damage-associated molecular pattern (DAMP), recognized as ‘non-self’ by immune cells, leading to inflammation which is mediated by nuclear factor kappa B-inflammasome, p38-c-Jun N-terminal kinase and Janus kinase-signal transducer and activator of transcription pathways. DAMPs are continuously released from damaged and senescent cells, causing an otherwise normally transient inflammation turning into systemic chronic inflammation, the root cause of aging and age-associated diseases (AADs). Cells restore redox balance by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway that induces the synthesis and release of antioxidation molecules and enzymes including haem oxygenase-1, which also inhibits the three inflammatory pathways. Furthermore, upregulation of autophagy (AP) can get rid of abnormal molecules, prevent the generation of DAMPs, and attenuate inflammation. Both AP and Nrf2 signalings decrease with age. The upregulations of Nrf2, AP, and downregulation of inflammation are controlled by sensors of energy and stress levels, i.e., adenosine monophosphate-activated protein kinase, silent information regulator 1, and Sestrins, as well as the extracellular matrix, while mammalian targets for rapamycin complex 1, a nutrient sensor, act in the opposite direction. If the balance of these sensor systems becomes dysregulated, aging process accelerates, and the risk of AADs increases.

Publisher

Open Exploration Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3