Let’s review the gut microbiota in systemic lupus erythematosus

Author:

Almada-Correia Inês1ORCID,Costa-Reis Patrícia2ORCID,Sousa Guerreiro Catarina3ORCID,Eurico Fonseca João4ORCID

Affiliation:

1. Rheumatology Research Unit, Institute of Molecular Medicine João Lobo Antunes, Faculty of Medicine of the University of Lisbon, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal

2. Rheumatology Research Unit, Institute of Molecular Medicine João Lobo Antunes, Faculty of Medicine of the University of Lisbon, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal; Pediatric Rheumatology Unit, Santa Maria University Hospital, North Lisbon University Hospital Centre, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal

3. Nutrition Laboratory, Faculty of Medicine of the University of Lisbon, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal

4. Rheumatology Research Unit, Institute of Molecular Medicine João Lobo Antunes, Faculty of Medicine of the University of Lisbon, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal; Serviço de Reumatologia e Doenças Ó� sseas Metabólicas, Santa Maria University Hospital, North Lisbon University Hospital Centre, Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal

Abstract

Systemic lupus erythematosus (SLE) is a chronic, immune-mediated disease associated with significant morbidity and mortality. New evidence suggests that diet, gut microbiota, intestinal permeability, and endotoxemia may modulate chronic inflammation and disease activity in SLE. This review focus on what is known about the gut microbiota in lupus mouse models and SLE patients and the possible mechanisms that connect the gut microbiota with SLE. It included 29 studies (12 animal studies, 15 human studies, and 2 included data on both), with variable results regarding alpha and beta-diversity and gut microbiota composition between lupus-mouse models and SLE patients. Ruminococcus (R.) gnavus was significantly increased in lupus nephritis (LN) in one study, but this was not corroborated by others. Despite the different results, mechanistic lupus mouse model studies have shown that gut microbiota can modulate disease activity. Interestingly, pathobiont translocation in monocolonized and autoimmune-prone mice induced autoantibodies and caused mortality, which could be prevented by a vaccine targeting the pathobiont. Moreover, studies on fecal transplants and diet on different lupus mouse models showed an effect on disease activity. In SLE patients, a higher adherence to the Mediterranean diet was associated with lower disease activity, which may be explained by the connection between diet and gut microbiota. Although gut dysbiosis has been observed in SLE patients and lupus mouse models, it remains to clarify if it is a cause or a consequence of the disease or its treatments. Further studies with larger and well-characterized populations will undoubtedly contribute to deciphering the role of gut microbiota in SLE development, progression, and outcome.

Publisher

Open Exploration Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3