Quantitative analysis of the effects of acoustic neurostimulation on the neuropsychology of healthy adults

Author:

Bouldin Radiance C.1ORCID,Higdon Julia R.2ORCID,Kang Jonghoon2ORCID

Affiliation:

1. Department of Psychology, Valdosta State University, Valdosta, GA 31698, USA

2. Department of Biology, Valdosta State University, Valdosta, GA 31698, USA

Abstract

To quantitatively analyze the effects of acoustic neurostimulation on the symptoms of depression, anxiety, stress, and sleep quality in healthy workers. Eleven physiological and psychological variables (V1–V11) representing stress levels, sleep quality, and cortisol levels were acquired from a recent article (https://doi.org/10.37349/ent.2023.00064) that analyzed the effects of brainwave entrainment (BWE) techniques—binaural beats (BB), isochronic tones (IT), or a combination of the two (BB + IT). Principal component analysis (PCA) was used to create principal components to analyze the contribution of each variable to the efficacy. A thermodynamic cycle and equations based on a Venn diagram were used to understand the differences in treatment effectiveness in individual and combined auditory stimulations. PCA reduced the dimensionality of variables from eleven to three. PC1 represented auditory treatment efficacy, while neither PC2 nor PC3 did. All eleven variables had a negative correlation to PC1, with stress (V3) showing the most negative correlation and salivary cortisol level (V11) showing the least. Treatments using BB were more effective than treatments with IT or BB + IT. PCA successfully aided in the analysis of auditory treatment efficacies. All examined variables, especially the stress scale (V3), had a negative correlation in treatment efficacy, aligning with the results of the original paper. Analysis using the thermodynamic cycle and Venn diagram based on PCA provided an explanation why a combined treatment (BB + IT) was less effective than BB alone in the collective consideration of all eleven variables. This study demonstrates that the thermodynamic cycle and Venn diagram in conjunction with PCA are useful analytical tools for the quantitative analysis of multi-factor systems.

Publisher

Open Exploration Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3